Email info@idics.org for more information.
All course purchases come with access to the course video library and a live question and answer panel discussion with topic experts.
(All US Government employees recieve a 5% discount)
All course purchases come with access to the course video library and a live question and answer panel discussion with topic experts.
(All US Government employees recieve a 5% discount)
The Good Practices Guide for Digital Image Correlation (GPG) defines the knowledge and skills required to conduct DIC measurements in conjunction with mechanical testing of a planar test piece. Furthermore, the GPG defines the knowledge required to obtain Level 1 certification. The GPG is available at http://www.idics.org/guide.
This course will delve into all the topics covered in the GPG in detail, focusing on practical applications of DIC rather than theory or algorithms. It is designed as training for new practitioners of DIC to supplement vendor-based training, and as a refresher course for those who will be taking the Level 1 certification exam.
DIC users who would like a thorough review of the iDICs Good Practices Guide for Digital Image Correlation (GPG). People who will be taking the Level 1 certification exam.
Cost $350 USD (5 hours of self-paced videos + exclusive access to online Q&A forum)
US Government employees get a 5% discount, email communications@idics.org for discount
Registered participants will have access to an online Q&A forum, where they can post their DIC questions and be guaranteed a response from a vetted member of iDICs. Participants can also request a live Q&A session by emailing info@idics.org.
(Course videos and handouts available with purchase)
Patterning is an essential part of every digital image correlation test setup. Although most users do avoid the worst-case scenario of “garbage in, garbage out” when it comes to patterning, there still seem to be a lot of non-optimum techniques and results in practice. Many users have concerns about their ability to produce high quality patterns without a lot of struggle, or a degree in Art. However, there are simple guidelines and methods that enable patterning to be a fast, easy and repeatable process, with straightforward quality metrics. This course will cover everything you need to know to confidently and quickly prepare any specimen for a DIC test and be sure that patterning will not be the limiting factor for obtaining the highest quality data.
It is hoped that all current or potential users of DIC would benefit from this course.
Cost $175 USD
(3 hour webcast)
(Handouts available with purchase)
The advanced DIC class will cover what is underneath and beyond the Good Practices Guide (GPG). The theme will be to understand where DIC errors come from and work through all the components in DIC that lead to the measurement errors. For example, how to pick a DIC lens and camera (and why), what are the associated errors with various lenses and how do you quantify them. Why does the GPG specify 3-5-pixel speckles? What are the underlying principles? Understanding the camera calibration and the parameters and what makes a good calibration. Where does the matching uncertainty come from? Concepts of advanced uncertainty quantification on the DIC measurement will also be discussed including a thorough look at the 2D matching error magnitudes. Stereo-DIC errors and advanced virtual strain gauge studies will be presented.
This course will go beyond the information needed for a Level 1 certification exam and target what is needed for Level 2 certification. All DIC users who would like to learn more about what influences their measurement accuracy.
The grid method is a technique suitable for in-plane displacement and strain measurement. It relies on a regular marking of the surface under investigation. The regular pattern acts as a spatial carrier, and the sought displacement components induce phase modulations of this carrier. Images of this regular marking, which progressively deforms during a test, can be advantageously processed with a spectral method. With the windowed Fourier transform, it is shown that displacement and strain components are obtained quasi-directly, which allows a fast and pixelwise determination of the displacement and strain fields. This course aims at providing the principle of this technique, with a special emphasis on its theoretical foundation and metrological performance. Practical aspects concerning its implementation will also be discussed.
Engineers and researchers who are seeking an alternative technique of DIC, in particular in cases for which a good compromise between spatial resolution and measurement resolution is needed.